Tampilkan postingan dengan label uji turunan ke 2. Tampilkan semua postingan
Tampilkan postingan dengan label uji turunan ke 2. Tampilkan semua postingan

Senin, 27 Maret 2023

Strategi Turunan Kedua Menentukan Jenis Ekstrim

 



CONTOH 1:
1. Dengan menggunakan uji turunan kedua, tentukanlah nilai balik maksimum atau nilai balik minimum dari fungsi f(x)=-x2-2x+3
JAWAB:
Turunan pertama dan kedua dari fungsi f(x)=-x2-2x+3 adalah f' (x)=-2x-2 dan f"(x)=-2
Titik stasioner fungsi f tercapai bila f' (x)=0 , maka









Nilai stasionernya f(-1)=-(-1)2-2(-1)+3=4
Untuk x=-1 diperoleh f"(-1)=-2<0 , maka menurut uji turunan kedua, fungsi f mempunyai nilai balik maksimum di x=-1.
Jadi, fungsi f(x)=-x2-2x+3 mempunyai nilai stasioner f(-1)=4 dan jenisnya merupakan nilai balik maksimum.





2. Dengan menggunakan uji turunan kedua, tentukanlah nilai balik maksimum atau nilai balik minimum dari fungsi f(x)=4x2+6x-4





JAWAB:
Turunan pertama dan kedua dari fungsi f(x)=4x2+6x-4 adalah f' (x)=8x+6 dan f"(x)=8
Titik stasioner fungsi f tercapai bila f' (x)=0, maka









Untuk x=-3/4 diperoleh f"(-3/4)=8>0 , maka menurut uji turunan kedua, fungsi f mempunyai nilai balik minimum di x=-3/4.
Jadi, fungsi f(x)= f(x)=4x2+6x-4 mempunyai nilai stasioner f(-3/4)=-25/4 dan jenisnya merupakan nilai balik minimum.





3. Dengan menggunakan uji turunan kedua, tentukanlah nilai balik maksimum atau nilai balik minimum dari fungsi f(x)=x3+10x2+12x-6





JAWAB:
Turunan pertama dan kedua dari fungsi f(x)=x3+10x2+12x-6 adalah f' (x)=3x2+20x+12 dan f"(x)=6x+20
Titik stasioner fungsi f tercapai bila f' (x)=0 , maka





Soal Pembahasan PECAHAN-MATEMATIKA KELAS 4, 5, dan 6 SD LENGKAP

Asalamualikum saya akan meberikan contoh soal matematika SD tentang Pecahan lengkap dengan latihan soal pecahan.  Materi yang akan saya samp...